The *Ehrlichia*, *Anaplasma*, *Borrelia*, and the rest....

Southern Region Conference to Assess Needs in IPM to Reduce the Incidence of Tick-Borne Diseases

Michael J. Yabsley
D.B. Warnell School of Forestry and Natural Resources and
Southeastern Cooperative Wildlife Disease Study
Department of Population Health
College of Veterinary Medicine
University of Georgia
Rickettsia

- The known pathogens
 - Chris Paddock
 - *R. rickettsii*
 - *R. parkeri*
 - Kevin Macaluso
 - *R. amblyommi*
 - *R. felis*

- The potential pathogens

- Next 30-40 min
 - The rest: *Ehrlichia, Anaplasma, Borrelia, etc.*
The most common suites of tick-borne pathogens of humans in the Southern US

- **Amblyomma americanum** (lone-star tick)
 - *Ehrlichia chaffeensis*
 - *Ehrlichia ewingii*
 - *Ehrlichia sp. PME agent*
 - ?? *Borrelia lonestari*
 - ?? *Rickettsia amblyommi*
 - ?? *Bartonella spp.*

- **Ixodes scapularis** and *I. pacificus* (black-legged ticks)
 - *Babesia microti*
 - *Borrelia burgdorferi*
 - *Anaplasma phagocytophilum*

- **Dermacentor variabilis**
 - *Rickettsia rickettsii*

- Others ticks ()
 - *Babesia* divergens-like species
 - *Babesia sp. WA1* (California)
 - Relapsing fever *Borrelia* spp.
 - ?? Relapsing fever borreliae in Florida canines
A. americanum: King of the South...and expanding its grasp

Up to about 1999

Current...maybe...
Established* and reported** distribution of the Lyme disease vectors Ixodes scapularis (I. dammini) and Ixodes pacificus, by county, United States. 1907-1996

*at least 6 ticks or 2 life stages (larvae, nymphs, adults) identified.
**at least 1 tick identified.
Factors that influence distributions of TBD

- Vectors
- Hosts
- Humans
 - Change in behavior, activities
 - Aging population, etc.

COMPLEX INTERACTIONS

- Habitat
 - Fragmentation
 - De/Reforestation
 - Suburbanization
 - Flood potential

- Climate
 - Temperature
 - Precipitation
 - Humidity
Trend: Increase in Tick-borne Diseases

CDC, MMWR

Lyme Disease: 2006 alone – 19,931 cases

Rocky Mtn SpFeV: 2006 alone – 2,288
WTD distribution and density
WTD distribution and density

1999
The most common suites of tick-borne pathogens of humans in the Southern US

- **Amblyomma americanum** (lone-star tick)
 - *Ehrlichia chaffeensis*
 - *Ehrlichia ewingii*
 - *Ehrlichia sp. PME agent*
 - ?? *Borrelia lonestari*
 - ?? *Rickettsia amblyommii*
 - ?? *Bartonella spp.*

- **Ixodes scapularis** and **I. pacificus** (black-legged ticks)
 - *Babesia microti*
 - *Borrelia burgdorferi*
 - *Anaplasma phagocytophilum*

- **Dermacentor variabilis**
 - *Rickettsia rickettsii*

- Others ticks (?)
 - *Babesia* divergens-like species
 - *Babesia sp. WA1* (California)
 - ?? Relapsing fever borreliae in Florida canines
Pathogens of Humans

Order Rickettsiales
Family Rickettsiaceae

Family Anaplasmataceae

Pathogens of Humans and found in the USA

- Ehrlichia muris
- Ehrlichia chaffeensis
- Ehrlichia ewingii
- Ehrlichia canis
- Ehrlichia ruminantium
- Ehrlichia sp. P-Mtn
- "Candidatus Neoehrlichia lotoris"
- "C. Neoehrlichia mikurensis" Nagano21
- "C. Neoehrlichia mikurensis" Germany Human
- Anaplasma phagocytophilum
- Anaplasma marginale
- W. pipiens
- W. endosymbiont of Brugia malayi
- "C. Xenohaliotis californiensis"
- N. sennetsu
- N. helminthoeca
- O. tsutsugamushi
- R. typhi
- R. prowazekii
- R. montanensis
- R. parkeri
- R. amblyommii
- R. rickettsii
- "C. Nicolleia massiliensis"
- "C. Midichloria mitochondrii"
- H. obtusa
Ehrlichia chaffeensis

- Predominate ehrlichiae in humans in the South
- White-tailed deer is principal reservoir
 - Coyotes, red fox, raccoons, dogs, and lemurs
 - Rodents appear unimportant
Deer studies

- Long-term infections
- Naturally and experimentally susceptible to multiple strains

Davidson et al., 2001; Yabsley et al., 2003, JCM; Varela et al., 2005; VBZD
29% of 7,673 deer seropositive

Dawson et al., 1994
Irving et al., 2000
Mueller-Anneling et al., 2000
Yabsley et al., 2003
E. chaffeensis surveillance using deer as sentinels

Yabsley et al., 2005; AJTMH
Ehrlichia ewingii

- Lone star tick is only proven vector
 - Others?

- Causative agent of canine granulocytic ehrlichiosis
 - First detected in 1969, but not described until 1992

- First reported human cases were in 1999
 - Flu-like illness without rash in humans

- Has never been cultured
Ehrlichia ewingii

WTD as Reservoirs?

Antibodies detected by ELISA in multiple populations - associated with LST and E. chaffeensis presence

13 of 259 (5%) WTD from 6 states PCR positive

Yabsley et al., 2002 EID

Yabsley et al., in prep.
Discovery of PM

Ehrlichia sp.

- Person at Panola Mountain State Park near Atlanta, GA became host for an *A. americanum* nymph
 - Sore neck developed 9 days later
 - Generalized pain prevented sleep
 - Put on doxycycline for 10 days
 - Rapid improvement of clinical signs in 48 hrs
 - Blood sample PCR positive for PM *Ehrlichia* sp.

Reeves et al., 2008 J Med Case Reports
Natural History of PM *Ehrlichia* sp.

Loftis et al., 2008, *Vet Microbiol*

Yabsley et al., 2008, *JWD*

Loftis et al., 2008 *BMC Infect Dis.*

36 of 3,799 ticks positive from 10 states

PCR-positive deer

PCR-positive ticks

PCR-negative ticks
Two genotypes of PM Ehrlichia sp. present in US based on analysis of map1 gene

Loftis et al., 2008
BMC Infect Dis.
Ixodes scapularis

“black-legged tick”
Anaplasma phagocytophilum

- Infects a wide range of hosts in US, Europe, and Asia
- Genetically and biologically diverse species

- In US two predominate genetic types are the AP-Var1 and Human variant (Ap-ha)
 - Other minor variants detected in upper Midwest
Anaplasma phagocytophilum

- Ap-ha associated with human and rodent/other wildlife infections in NE and upper Midwest

- Ap-Var1 associated with WTD infections and not rodents or raccoons
 - Experimentally and in field

(Massung et al., 2003; Massung et al., 2005; Dugan et al., 2006; Reichard et al., 2008; Yabsley et al., 2008)
Anaplasma in dogs

National prevalence: 4.7%
Almost 1 million dogs tested
Anaplasma in WTD

- 15 PCR-positive WTD were all infected with Ap-Var1
- Four variants based on p44 gene sequences

Antibodies reactive with Ap present throughout WTD populations in Southeast (and Northern states as well)

All strains should cross-react serologically

Dugan et al., 2006 VBZD
Anaplasma phagocytophilum

Differences in North vs. South?
- Few human cases in the Southeast
 - 2006
 - New England, Mid. Atlantic, and N. Central – 613 cases
 - Southeast – 31 cases
- Raccoons
 - Reservoirs of Ap in CT \(\text{(Levin et al., 2002)} \)
 - All raccoons tested in South are negative \(\text{(Dugan et al., 2004; Yabsley et al., 2008)} \)
 - Experimentally, raccoons develop long term infections with Ap-ha but short-term infections with Ap-Var1 \(\text{(Yabsley et al., 2008)} \)
Much confusion on *Borrelia* in the Southeastern United States

How do we know so much, yet know so little?
Lyme Disease

- Caused by *Borrelia burgdorferi*

- Vectors: *Ixodes scapularis* and *I. pacificus*
 - Also detected in other ticks
 - *A. americanum*
 - *I. affinis*

- Reservoir: *Peromyscus* spp. and other rodents, rarely other mammals
 - Found in mammals and ticks in Northeast and Southeast
 - PCR reports in lizards from SC/FL

- White-tailed deer – important as hosts to adult ticks

Clark, 2004; Clark et al., 2005
National Lyme disease risk map with four categories of risk

Established* and reported** distribution of the Lyme disease vectors Ixodes scapularis (I. dammini) and Ixodes pacificus, by county, United States. 1907-1996

Note: This map demonstrates United States. The true risk may differ from that shown in the accompanying map, which is obtained from state health departments.

*at least 6 ticks or 2 life stages (larvae, nymphs, adults) identified.
**at least 1 tick identified.
National prevalence: 5.0%

Almost 1 million dogs tested

Bowman et al., in press Vet Parasitol
Lyme in dogs

Dwight Bowman
Lyme disease and STARI in South

- Lyme or similar disease observed in patients from the South
 - *B. lonestari* detected by PCR in culture media of a tick removed from a STARI patient (James et al., 2001 J Infect Dis)
 - 30 STARI patients were negative for *B. lonestari* and *B. burgdorferi* (Wormser et al., 2005 Clin Infect Dis)
 - 9 STARI patients from MO were C6 ELISA negative (Phillip et al., 2006 Clin Vaccine Immunol)
Borrelia lonestari

- Detected in LST throughout the Southeast
 - Cultured from LST
- Detected by PCR in wild WTD
- WTD experimentally susceptible to *B. lonestari*
 - By culture inoculation
 - By wild tick exposure
- *B. lonestari* doesn’t create EM lesions in rabbits

Moore et al., 2003 J Clin Microbiol
Varela et al., 2004, J Clin Microbiol
Moyer et al., 2006 Vet Microbiol
Varela-Stokes, 2007 J Med Ent
Little et al., unpublished
Use of WTD to prove Bb transmission beyond tick-rodent cycles in Southeast

Bb evidence
- SNAP and IFA +
- SNAP + and IFA -

other Borrelia evidence?
- IFA + and SNAP -

Negative populations
- IFA and SNAP -

Murdock et al., submitted VBZD
B. burgdorferi s.s. from North and South are not genetically distinct based on *rrf-rrl* intergenic spacer (Oliver et al., in press, J Parasitol)
Other *Borrelia*

- **Borrelia lonestari**
 - *A. americanum*
 - WTD

- **Borrelia bissetti**
 - *I. scapularis, I. affinis* and *I. minor*
 - *Peromyscus gossypinus, Sigmodon hispidus,* and *Neotoma floridana*
 - Lizards from FL

- **Borrelia andersoni**
 - *Ixodes dentatus* and *I. scapularis*
 - Rabbits
 - Lizards from SC/FL

- **Borrelia carolinensis**
 - *I. minor* from South Carolina
 - *P. gossypinus* and *N. floridana* from South Carolina

- **Borrelia sp. related to *B. turicatae***
 - *Ornithodorus* soft ticks from Texas
 - Florida and Texas canines
LST-transmitted pathogen discussion points

- Determine if known organisms are human pathogens
 - i.e., *R. amblyommii*, *B. lonestari*, etc.
- Identification of other organisms that may be emerging pathogens
- Effects of modification of landscape
 - Suburbanization
 - Prescribed fire
 - Alteration of habitats that alter host dynamics
 - i.e., does the dilution hypothesis apply to LST-organisms?
LST-transmitted pathogen discussion points

- Who is more important to *E. ewingii*?
 - Dogs? Deer?

- Culture isolation of *E. ewingii* and *Ehrlichia* sp. PME

- Serodiagnostic antigens that are specific to *E. chaffeensis*, *E. ewingii*, *E. canis*, etc.

- Need for large-scale prospective studies of humans in high tick exposure areas to determine general exposures
Ixodes-transmitted pathogen discussion points

Borrelia:
- Greater genetic diversity in South
- Greater host range in South
- Greater number of tick vectors in South
 - Why few/no human cases?
- Zoonotic potential of various southern *Borrelia* spp.?
 - Many have been found in *I. scapularis*
Ixodes-transmitted pathogen
discussion points

- Surveys and fine scale niche modeling to determine distribution and diversity of *Borrelia* spp.

- Is *I. scapularis* transmitting *B. b.s.s.* to deer in South – if so, might it also to humans
 - Alternative vectors, such as *I. affinis* wouldn’t explain AR/LA +’s

- *Anaplasma*:
 - Similar to *Borrelia*… maybe?
General discussion points

- Increasing distribution of ticks
 - Is the density of ticks also increasing?

- Is the prevalence of pathogens increasing in tick populations?
 - If so, what is the driver

- Are tick-borne diseases still highly focal

- What is best surveillance tool for tick-borne pathogens?
 - Wildlife testing
 - Domestic animal / human testing
 - Tick surveys
 - Do all wildlife populations that have the appropriate tick vector also harbor pathogen X?

- Is there, and if so, what is causative agent of STARI ?!
Acknowledgments

NIH/NIAID
R01 AI044235
R56 AI062834
R03 AI062944
R03 AI060868

Southeastern Center for Emerging Biologic Threats

UGA Research Foundation

IDEXX Laboratories

University of Georgia
Dr. Randy Davidson
Dr. Dave Stallknecht
Page Luttrell
Jamie Manangan (grad student)
Sean Adams (vet student)

Oklahoma State University
Dr. Susan Little
Misti West

South Dakota State University
Dr. Mike Wimberly

IDEXX Laboratories
Dr. Tom O’Connor
Dr. Chandrashekar Ramaswamy

CDC (now Idaho State)
Dr. Amanda Loftis

SCWDS, USDA, and state wildlife agency personnel
Questions and/or Discussion?

Pathogen Biology and Ecology: Tomorrow at 9am in Room 116